Basic Principles of MRI

莊子肇 副教授 中山大學電機系

1

Basic ideas

- Magnetic: the signal source (magnetization)
- **Resonance**: signal excitation and detection
- Imaging: spatial encoding of signals

Nucleus of ¹H = single proton

Magnetic field produced by the spin of a proton

Hydrogens in human body

- Water (H₂O), fat, protein,...
- Every 18 g of water (1 mol.) contains 2 x 6 x 10²³ hydrogens!
- Everyone could be Magneto!?

Application of an external magnetic field

Random distribution

To observe the nuclear magnetization...

- You definitely need an external magnetic field
- Felix Bloch and Edward Purcell
 - Awarded 1952 Noble Prize for "their development of new ways and methods for nuclear magnetic precision measurements"
- Basic tool of MRI: magnet

NMR experiments in early days

1964

Influence of the external magnetic field

- Without the main magnet field, protons are randomly distributed.
 - Human body has NO magnetization
- With the main magnet field, protons are regularly distributed.
 - Non-zero magnetization!

Now you are magnetic...

- Oops, will nails fly to me after I have an MRI scan?
- Will I be forced by Earth's magnetic field?

Don't worry...

The magnetization is temporary.
It's gone right after leaving MRI.

Besides, the magnetization is very weak.
In fact, not all H protons are aligned in parallel.

Spin of atomic nucleus generates...

- Magnetic moment
- Angular momentum

• Magnetogyric (or gyromagnetic) ratio (γ)

¹H: spin 1/2 system (S = 1/2)

- The magnitude of spin angular momentum is **quantized**.
 - According to quantum mechanics, spin quantum number (or simply, *spin*) can only be discrete integers or half integers. (e.g., 0, 1/2, 1, 3/2, ...)
- The spin of ¹H nucleus (proton) is 1/2.
 - Magnetic quantum number = $\pm 1/2$
 - Corresponding to 2 spin states (2S+1 states)

Two spin states of ¹H

Net magnetization = sum of magnetic vectors ~ population difference

Population distribution

(Simplicity) parallel and anti-parallel spins

The population difference is around 5 in every one million spins.

Common numbers in MRI

- Strength of external magnetic field = 1.5 Tesla - 15000 Gauss

 - 30000 times of Earth magnet (~0.5 G in Taiwan)
- The magnetic field of human body at surface ~ 0.05 Gauss
 - Only 1/10 of Earth magnet
 - Become smaller when moving away from the body

Weak magnetic field of human body

- Despite of the use of a strong external magnetic field, the induced human magnet is very weak.
- Not to mention when a smaller magnetic field of 0.3 Tesla (in 1980s) was applied, the MR signal was smaller.

Spinning of nucleus leads to...

- Spinning of electrical charge: magnetic moment
 Tend to align with the external magnetic field
- Spinning of mass: angular momentum
 - Tend to maintain its own motion (inertia)
- Precession: a circular motion of spin when an external magnetic field is applied

Precession of spins

Bloch equation

$$\vec{M} \times \vec{B} = \frac{d\vec{J}}{dt} = \frac{1}{\gamma} \frac{d\vec{M}}{dt}$$

- $-\overline{M}$: bulk magnetization ($\sum_{i} \overline{\mu_{i}}$)
- $-\overrightarrow{B}$: external magnetic field
- Describe the motion of \overrightarrow{M} in NMR and MRI

Larmor equation

- The frequency (ω) of precession is obtain by $\vec{\omega} = -\gamma \vec{B}$
 - Larmor frequency
 - 63.87 MHz @1.5 Tesla

A quick look back

(Simplicity) Parallel and anti-parallel spins

More accurate (but still too simplified...)

Bo m = +1/2Spin up $\frac{N_{upper}}{N_{lower}} = e^{-\frac{\Delta E}{KT}}$ Low energy $\frac{\gamma \cdot h \cdot B_0}{2\pi} = \hbar \cdot \boldsymbol{\omega}$ $\Delta E =$ m = -1/2Spin down **High energy**

The measured NMR signal is...

- The summation of nuclear magnetization of all spins
 - Bulk/Net magnetization (\overline{M})
- The population difference of spins is almost proportional to the strength of magnetic field.
 - The higher magnetic field, the stronger MR signal.

Any other nucleus having MR signal?

• Any nucleus with a non-zero spin (S≠0)

Odd number of proton or neutron

– For example, ¹³C, ¹⁹F, ³¹P,...

 Signal intensity of these nuclei is much lower than that of ¹H because of their low concentrations in human body.

Properties of some nuclei

lsotope	Spin quantum number	γ (MHz/T)	Abundance (%)
¹ H	1/2	42.58	99
¹² C	0		98
¹³ C	1/2	10.7	1.1
¹⁶ O	0		99
¹⁷ O	5/2	5.8	0.1
¹⁹ F	1/2	40.0	100
²³ Na	3/2	11.3	100
²⁵ Mg	5/2	2.6	10
³¹ P	1/2	17.2	100
³³ S	3/2	3.3	0.7
⁵⁷ Fe	1/2	1.4	2.2

Nucleus? Proton? Spin? Are they the same?

- Nucleus of ¹H = Single proton
- Spin is an intrinsic quantum property of every nucleus that allows MR signal to exist.
- For routine MRI scan, nucleus, proton, and spin are roughly synonymous.
 - Not true for other nuclei, such as ¹⁹F and ³¹P.